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MCG-6-30-15 : physics of a spinning'BH
Are disk signatures generic amongst AGN?
X-ray binary sources (in brief).

The future and Constellation-X




| : X-ray signatures of disks
in black hoﬁsystems

. Accretion flow produces \

hard X-ray continuum
(thermal Comptonization)

). Irradiated optically-thick
matter will

— Compton backscatter X-rays
(Lightman & White 1988;
Guilbert & Rees 1988)

— Cause fluorescence
(strongest line 1s iron Ka)




David
Ballantyne

Also see

*George & Fabian (1991)
*Matt et al. (1991)

*Reynolds (1996)

*Nayakshin & Kallman (2000)
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Relativistic effects imprint characteristic profile
on sharp spectral features

First calculations of
line profiles by
Fabian et al. (1989);
Laor (1991)

Newtanian

Special relativity

General relativity

Line profile

S I NI R |
0808 1 12 14

/'
Vol Vo




Il : The AGN MCG-6-30-15

The classic relativistic disk line

X-ray reflection first
found by EXOSAT &
Ginga (Nandra et al. 1989;
Pound et al. 1990)

First relativistic broad iron
line found by ASCA

— Consistent with a disk
extending to the ISCO of a
non-rotating BH

Some of the most direct
evidence for a supermassive
black hole in any source

A ROBUST FEATURE!
(Fabian et al. 1995)
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The "Deep Minimum”

Iwasawa et al:
(1996)




June-2000 XMM-Newton
observation of MCG-6-30-15

Power-law fit
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Disk emissivity...
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Inconsistent with-“standard” disk models
of Novikov, Page & Thorne (PT-disk)

PT disk model
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What's going on?

X-ray emission/reflection does not track total dissipation...
Suppose X-ray emission 1s zero beyond r=r_,
With PT-disk, data require r, ,<6GM/c?
Problems with X-ray/Bolometric ratio...

Alternative : vertically displaced source (Martocchia & Matt 2002;
Fabian & Vaughan 2003)

PT-disk 1s incorrect... could be torqued at inner edge
Gammie 1999; Agol & Krolik 2000; Merloni & Fabian 2003

Torque due to magnetic connection between disk and plunging-
region or rotating black hole...

Possibility for extracting spin-energy of black hole
See poster by Garofalo & CSR




NASA/Dana Berry




Torqued accretion disks

Torqued disk
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CSR et al. (2003, in prep.)




Comparison with the 320ks XMM
observation of MCG-6-30-15

Deep look at MCG-6-30-15

Caught source in higher-flux
state (not Deep Minimum)

Very high S/N iron line

Disk emission more
distributed, but very broad
red wing still present

Lack of flux-correlated line
variability...

— Spectrum decomposes into
constant “reflection-
dominated” spectrum, and
variable power-law.

. - - —
{(keV em © s 1 eyt

ax107% 4x107t =107t 8x107*

Line flux Fy

Fabian et al. (2002)
Fabian & Vaughan (2003)




Flux (ph/em®/s/keV)

Flux {ph/cm®/s/keV)

Flux (ph/cm*/s/kev)

107

a

o

o

1o

Count Rate Bin 1

Energy (kev)

Count Rate Bin &

Energy (keV)

Count Rote Bin 9

Energy (keV)

Flux (ph/cmz/s/kev)

Flux (ph/cmz/a/ke\f’)

Count Rate Bin 2

1074

a

Energy [kev)

Count Rate Bin 6

Flux (ph/cmzfs/ke\a‘)

Flux (ph/cmz/s/ke\-’)

Energy (keV)

Count Rate Bin 10

T T T T
—
e
L
=
Tel
[
R = %}
o~ — |
E
5 L
g I
= E
x O e—-— - - — —
=]
[
1 L | L 1

Energy (keV)

Flux (ph/cm2/s/ke\-"]

Count Rate Bin 3

107

a

Flux [ph/cmz/s/ke\f}

Energy (kev)

Count Rate Bin 7

jary
=)

Energy (keV)

Count Rate Bin 11

107t

o

Energy (keV)

<

Flusx (ph/cmz/S/keV)

Flux (ph/cm2/s/ke\-"]

Count Rate Bin 4

Energy (kev)

Count Rate Bin 8

Energy (keV)

Ceunt Rate Bin 12

1o

o

Energy (ke¥)

Also... see RXTE analyzes of
Chiang, CSR et al. (2000), CSR (2000)
Lee et al. (2000)

MCG-6-30-15 (ASCA)
Shih et al. (2001)




Primary source: corotating ring atr, = 1.5 ”

Minuitti et al.




A dusty warm absorber or
soft X-ray lines from a-relativistic disk

Arguments against pure
warm absorber model;

— Simple oxygen edges seem
are absent?

— Resonance absorption lines
of oxygen are weak
Relativistic line model;

— Relativistic emission lines
of OVIII, NVII and CVI...

.. plus some ionized
absorption

But... WA 1s dusty! Can
this affect the spectral
arguments?

MCG-6-a80-15
relativistio line model
with sbsorption
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Still subject of debate...
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Remember that underlying soft continuum may
be rather bumpy (from reflection continuum)!

10 20
Energy {(keV)




Il : Are disk signatures generic?

Results from ASCA

Broad lines generic in
Seyfert galaxies

Became weaker in high-L
AGN.

Also weak in low-L AGN

Very promising and “clean”
probe of accretion disks and
black hole physics in most
generic AGN!

Data,/Model

| ioterero®
czx>=0.875

Situation become more
complex with XMM
observations Nandra et al. (1997)




The iron-clad cases
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NGC3516
Turner et al. (2002)




Direct detection.of ionized disks

Mrk509 Mrk205
(high-L Seyfert) (low=L quasar)

Rest Energy (keV) Rest Enerqy (keV)




NGC 4151

XMM-Newton
(Schurch et al. 2002)
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Wang et al. (199952002)




CompariSOn Of ASCA and Partial covering (1 10keV)
XMM data...

— Broad line substantially
weaker during XMM
observation

Very strong line of Wang et
al. probably artifact of poor
continuum subtraction

data/model

— Need to be very careful

about modelling absorption!
(Schurch et al. 2002)

Koeckert & Reynolds




NGC 4593

Somewhat similar AGN to
MCG-6-30-15
— Radio-quiet AGN

— Similar BH mass and
luminosity

NGC4593 XM EPN Spectrum {phabs pa)

— Rapidly variable in X-rays

— X-ray warm absorber

July 2002 campaign... &
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ESO, STIS, XMM, RXTE
Preliminary XMM results:
— No obvious disk signatures

— Hard (not impossible!) to
smear/ionize features away

Brenneman & CSR




MNGCA593 MM EPN Fe Line Variation {20—30ks)

data/model

MNGCA593 MM EPN Fe Line Variation {60—70ks)
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The search for disks...

Disk features should be present inX-ray spectra of
active sources!

Careful analysis 1s required:
— Modeling the continuum properly 1s crucial

— ... but you cheat yourself if you include arbitrary:
(unphysical) continuum components!

Also have to account for:
— Strong 1onization of disk surface
— Extremely strong relativistic smearing (e.g. MCG-6)

— Dramatic variability of spectral features (Are XMM
observations too short to see “well-behaved” features?)

vy




IV: Disk signhatures in
Galactic Black Hole Binaries

Studied by Ginga &
RXTE (see review by
CSR & Nowak 2003)

Disk signatures hard to

study in GBHCs

— Disk 1onization generic
— Complex continuum

— Bright; saturated early CCD
spectrometers

Chandra & XMM Red: XTEJ1650-500 (XMM-Newton)
Blue : Cygnus X-1 (Chandra)

— revealed broad iron lines in Miller et al. (2001,2002)

Cyg-X1 & XTEJ1650-500
See talk by Jon Miller...




V : Conste iati\on-X studies
of BH disk signhatures

). Variability of disk signatures open up new
windows on physics of accretion disks and blagk
hole themselves

— Variability on dynamical timescale = turbulence

— Variability on light-crossing time = reverberation =
space-time geometry




Probe of disk
turbulence
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Armitage &
Reynolds (2003)




. Reverberation of X-ray-flares
(CSR et al. 1999)

). Sensitive probe of space-time
geometry
— Get inward and outward
propagating X-ray echoes

— 1nward propagating echo 1s
purely a relativistic effect =
measure spin parameter

) Just within reach of Con-X




Conclusions

X-ray spectroscopy can provide powerful probe of
relativistic accretion disks

Some iron clad and well-studied cases (both AGN and GBHCs)

Broad iron lines not as generic as previously thought?  Jusy still
out...

Ionization, extreme smearing, variability may all play rol¢ in
reducing prominence of features.

Capabilities of Constellation-X crucial for pushing
significantly beyond Chandra/XMM era

— High resolution spectroscopy needed to disentangle complex
spectra (esp. characterize absorption)

— Variability of disk signatures used to probe turbulence and space-
time geometry.




Non-axisymmetric structure may have
been seen-already...

Chandra-HETG data on NGC3516 Simulation results for inclination
(Turner et al. 2002) of 20 degs (summed over 2 full orbits)

A prime science target for Astro-E2
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F1G. 7—Panel a shows the theoretical line response to the two overlapping flares described in the text. Panel b shows the simulated line response as seen
by Constellation-X. The individual transfer functions of the two flares can be discerned. The data have been rebinned to produce these figures with improved
signal-to-noise ratio.

Constellation-X simulations




